
MULTIPLICATIVE STRUCTURES IN EQUIVARIANT
HOMOTOPY THEORY

DORON GROSSMAN-NAPLES

The primary sources for this talk are [4] and the fourth chapter of [1].

0. Motivation: the Hill-Hopkins-Ravenel Norm

The biggest new element of equivariant homotopy theory introduced by looking
at ring spectra is that of norms, or multiplicative transfers. Recall from field theory
that there are two “averaging maps” for a finite Galois extension: the trace and
the norm. One of them is defined as a sum over the action of the Galois group,
and the other is defined as a product. The trace is generalized by the additive
transfers appearing in Mackey functors. The classical norm from algebraic number
theory is generalized by multiplicative transfers, which we usually call norms. The
most important example of a norm was constructed by Hill-Hopkins-Ravenel in
their paper [6], and so I’ll begin by describing this construction. We’ll then talk
about a combinatorial generalization of this, N∞-operads and their algebras, and
how they describe multiplicative transfers; and finally, we’ll look at the formalism
of (incomplete) Tambara functors, which play the role for π0 of equivariant rings
that Mackey functors play for π0 of equivariant spectra.

Definition 0.1. Let G be a finite group. A G-E∞-ring is an object of CAlg(SpG).

Construction 0.2 (HHR Norm).  
i) The tensor induction from H up to G is given by X 7→

∧
j∈G/H Xj .

ii) The change of universe functor IUU ′ : SpG[U ′]→ SpG[U ] is given on orthog-
onal G-spectra by IUU ′X(V ) = JG(Rn, V ) ∧O(n) X(Rn), where dimV = n

and JG(Rn, V ) = O(V )+∧O(Rn−V )SR
n−V is the Thom spectrum for orthog-

onal complements. One can show that this is an equivalence of categories;
this depends crucially on the structural properties of orthogonal spectra,
since genuine equivariant G-spectra are modeled by orthogonal spectra with
G-action.

iii) The norm functor NG
H : SpH → SpG is given by changing to the trivial H-

universe, taking the tensor induction up to G, giving the resulting spectrum
the canonical action of the wreath product Σ|G/H| oH, and finally changing
back to a complete H-universe.

Note that this is defined for both spaces and spectra.

Theorem 0.3. The norm functor is symmetric monoidal and preserves sifted col-
imits; and, moreover, the norm behaves correctly with respect to suspensions by
representation spheres1 and with respect to taking geometric fixed-points.
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1Specifically, it becomes suspension by a representation sphere for the induced representation.
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Corollary 0.4. The norm functor descends to a functor on G-E∞-rings, which is
left adjoint to restriction.

Okay, good. Talk done, I guess. But...what is the actual structure of a G-E∞-
ring? And aren’t there examples of “equivariant commutative rings” with only some
transfers? To understand this properly, we’ll need to describe equivariant rings in
terms of operads.

1. Operads

We begin by recalling the definition of an operad.2

Definition 1.1. Let C be a symmetric monoidal category. An operad O in C

consists of the following data:
i) For each n ∈ N, an object O(n) ∈ C together with a right Σn-action on

O(n);
ii) A “unit” map 𝟙C → O(1); and
iii) For each k and each n1, . . . , nk, composition maps O(k) ⊗ O(n1) ⊗ · · · ⊗

O(nk)→ O(n1 + · · ·+ nk).
These maps must satisfy composition identities corresponding to grafting of

(symmetric rooted) trees; in particular, they must be equivariant with respect to
the appropriate symmetric group actions. (Identifying trees which differ by collapse
of an internal edge yields associativity and unitality identities.)

Definition 1.2. A map of operads is a levelwise map commuting with the Σn-
actions, the identity, and the composition maps.

Suppose D is a symmetric monoidal category enriched over C . Then every object
d ∈ D has an endomorphism operad, End(d), whose n-ary operations are given by
Hom(d⊗n, d) with the evident permutative action, identity, and composition maps.

Definition 1.3. An algebra over an operad O consists of an object d and an a map
O → End(d). (If the category is tensored over C and has finite colimits, this is the
same as a map O(n)⊗Σn

X⊗n → X for each n which satisfy appropriate relations.)

We will generally consider operads in the categories Set, Top, and GTop in
this talk; by default, operads will be assumed to be internal to Top, with operads
internal to GTop referred to as G-operads. With this convention, we can endow
the category of operads with a standard model structure presenting the category
of∞-operads. Much like how∞-categories can be described using the Joyal model
structure on simplicial sets,∞-operads can be described using the Cisinski-Moerdijk
model structure on dendroidal sets ([5]), which replaces simplices with rooted trees.

A particularly important operad in ordinary stable homotopy theory is the E∞
operad.

Definition 1.4. An operad O is called E∞ if each O(n) is contractible with free
Σn-action.

2For the purpose of this talk, “operad” really means “monochrome symmetric operad”. There
is no loss of generality in assuming symmetry, because planar operads admit a fully faithful
embedding into symmetric ones.
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Example 1.5. Fix n, and write Ek for the operad such that Ek(n) is the space
of disjoint rectilinear embeddings of n k-dimensional cubes into a k-dimensional
cube. This is called the little n-cubes operad. We have a natural map En → En+1

given by taking the product with an interval, and the colimit as n → ∞ is called
E∞, the little cubes operad. As the n increases, the connectivity of each operator
space of En increases, so the operator spaces of E∞ are contractible; that is, it is
an E∞-operad, as the name suggests.

Proposition 1.6. All E∞-operads are equivalent. (This justifies our reference to
“the” E∞ operad.)

Proof. If O and O′ are two E∞-operads, each of the objects in O(n) ← O(n) ×
O′(n) → O′(n) is contractible with free Σn-action. Consequently, the maps are
equivalences. �

2. N∞-Operads and Indexing Systems

Commutative algebra and algebraic geometry in the ordinary category of spectra
are done over E∞-rings, i.e. algebras in Sp over the E∞ operad. To describe an
appropriate notion of commutative ring spectrum in the equivariant context, we
will need to construct an equivariant analogue of E∞. Whereas ordinary multi-
plication is parameterized by tensoring with sets (i.e. the coproduct), equivariant
multiplication ought to be parameterized by tensoring with G-sets. Since we want
everything to be genuine, and we may not have all multiplicative transfers, this will
require us to work with families of subgroups.

Definition 2.1. Let G be a finite group.
i) A family of subgroups of G is a subset of the subgroup lattice of G which

is closed under conjugation and taking subgroups.
ii) If F is a family of subgroups of G, the classifying space for F is the G-space

EF such that EF(G/H) = ∗ if H ∈ F and ∅ otherwise.

This additional structure will give rise to multiplicative transfers between sub-
groups, or “norms”, the first letter of which gives its name to this class of operads.

Definition 2.2. A G-operad O is called N∞ if for all n,
i) The Σn-action on O(n) is free,
ii) O(n) = EFn for some family Fn of subgroups of G×Σn containing G×{1},

and
iii) The underlying space of O(n) is contractible.

Example 2.3. Let U be a G-universe, and take LU (n) to be the space of linear
isometries Un → U . Then the linear isometries operad LU is an N∞-operad, since
the space of linear isometries between any infinite-dimensional inner product spaces
is contractible.

Unlike in the nonequivariant case, however, the linear isometries operad is not
the only N∞-operad. Not only that, but it isn’t even the only N∞-operad that can
be constructed from this universe!

Example 2.4. Let V ⊂ U be a subrepresentation, and let RV be the space of
distance-reducing self-embeddings of V with G acting by conjugation. Define a
Steiner path to be a map I → RV with 1 7→ id, and set K(V )(n) to be the G-space
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of n-tuples of Steiner paths fi such that the self-embeddings fi(0) have disjoint
images. Equip these spaces with the evident operad structure and take the colimit
over subrepresentations V ⊂ U to get K(U), the Steiner operad associated to the
universe U .

Theorem 2.5. If NCG and UN is the G-universe generated by R[G/N ], L(UN ) '
K(UN ). However, as long as G has at least three elements, there exists an (incom-
plete) G-universe U such that L(U) 6' K(U).

This result follows from the classification of N∞-operads in terms of combinato-
rial data called indexing systems.

Definition 2.6. Let ⊗Cat denote the category of small symmetric monoidal cat-
egories and strong monoidal functors. Then we define a symmetric monoidal cate-
gorical coefficient system (or SMCCS) for G to be a functor Oop

G → ⊗Cat.

Definition 2.7. Write Top for the SMCCS on G that sends G/H to the category
of H-sets. An indexing system is a sub-SMBCCS I of Top satisfying the following
closure conditions:

i) I(G/H) contains all trivial H-sets
ii) I(G/H) is closed under Cartesian products
iii) I(G/H) is closed under taking subobjects
iv) If H/K ∈ I(H) and T ∈ I(K), then H ×K T ∈ I(H) (closure under

self-induction).
We write I for the category of indexing systems.3

We will show that indexing systems completely describe the homotopy theory of
N∞-operads.

Definition 2.8. Fix a finite group G and an N∞-operad O, and let H ≤ G. We
say an H-set of cardinality n is admissible if the graph of the structure morphism
H → Σn is in the nth family of subgroups Fn associated to O. If every finite H-set
is admissible, we say O is a complete N∞-operad.

Remark 2.9. It should be noted that every subgroup Γ ∈ Fn is the graph of a
homomorphism. This is because Σn is required to act freely on O(n), so any such Γ
must have trivial intersection with {1}×Σn by the definition of EFn. Consequently,
the data of these families of subgroups can equivalently be encoded as the choice
of admissible H-sets for each H ≤ G. We will see that these are the source of
multiplicative transfers.

Theorem 2.10. Define a functor N∞Op → I by sending an operad O to the
indexing system O which associates to G/H the category of admissible H-sets for
O. This functor induces an equivalence hN∞Op→ I.

Proof sketch. In short, we need to show that the conditions defining an N∞-operad
match up with the conditions defining an indexing system. Suppose we have an
N∞-operad O, and define a functor I : Oop

G → ⊗Cat as described above. Symmetric
monoidality amounts to closure under coproducts, which follows by applying the
composition map O(2)×O(s)×O(t)→ O(s+ t), so it remains to check the closure
conditions.

3This is really just a poset.
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The containment of trivial sets in I(G/H) corresponds to the containment of
H × {1} in Fn. For the subobject condition, suppose an admissible H-set splits
as a coproduct, so the associated morphism H → Σn factors through some block
subgroup Σs×Σt (where s+ t = n and s, t > 0). Let Γ be the associated subgroup
of G×Σn, which is a subgroup of G×Σs×Σt. Then it is enough to show that the
image of Γ under the projection to G×Σs is admissible. Using the composition map
O(n)×O(1)s×O(0)t → Os reduces us to showing that (O(n)×O(1)s×O(0)t)Γ = ∗;
but the action on the first factor has nonempty fixed points by assumption, and
the same follows for O(1)s × O(0)t by restricting along the diagonal and using
contractibility of O(0) and O(1).

A similar argument using the wreath product shows the cartesian product con-
dition, and self-induction follows from an explicit computation.

The above shows that O 7→ O is a well-defined fully faithful functor hN∞Op→
I. The essential surjectivity of this functor was proven independently in three
different papers in 2017; in particular, Rubin constructed ([7]) an N∞-operad for
any indexing system in terms of fibrant replacement in a certain model category of
discrete G-operads. �

3. Additive and Multiplicative Transfers

Now let’s see how admissible sets give rise to transfer maps. Suppose T is an O-
admissible H-set of cardinality t (for some H ≤ G) and write ΓT for the associated
subgroup of G×Σt. Then Map(G×Σt/ΓT , O(t)) ∼= O(t)ΓT ' ∗, and for any space
X, (G× Σt/ΓT )×Σt

Xt ∼= G×H Map(T,X). Thus if X is an O-algebra in GTop,
we get a composition

G×H Map(T,X)→ (G× Σt/ΓT )×Σt
Xt → O(t)×Σt

Xt → X,
where the last map comes from the operadic multiplication. Writing NTX :=

G×X Map(T,XH), any map of admissible H-sets T → S induces a map NTX →
NSX unique up to contractible choice. Taking fixed points and then taking homo-
topy groups, we get the desired transfers.

Theorem 3.1. Let O be an N∞-operad for a finite group G, H ≤ G a subgroup,
X an O-algebra in GTop, k ∈ N, and T → S a map of admissible H-sets. Then
we get a unique, natural abelian group map πk((N

TX)H)→ πk((N
SX)H).

Thus whenever H/K is an admissible H-set, the canonical map H/K → H/H
gives rise to a map trHK : πkX

K → πkX
H . Together with the restriction map, this

transfer satisfies a double coset formula.

Theorem 3.2. Suppose H/K is an admissible H-set, and let K ′ be a subgroup of
H. Then the following formula holds:

resHK′trHK =
⊕

g∈K′\H/K

trK
′

K′∩gKg−1resKK′∩gK′g−1 .

That is to say, for an admissible H-set T , the transfer associated to the K ′-set TK′

is obtained by taking the transfer associated to T and restricting down to K ′.

So far, we’ve worked with N∞-algebras in the category of G-spaces. If we replace
(GTop,×) with (SpG,∧), however, we get multiplicative transfer maps on homotopy
groups associated to admissible H-sets. All the results of this section carry over
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more-or-less unchanged, with the caveat that we must assume the operadic action
“interchanges with itself”. This means that the structure maps X∧n → X of the
O-algebra structure are O-algebra maps. Blumberg-Hill have conjectured ([4]) that
the derived tensor product of N∞-operads is an N∞-operad, which would imply
that this is always that case.

It is worth noting that these transfers reproduce the Hill-Hopkins-Ravenel norm
([6]), so this is the systematization we were looking for.

4. Tambara Functors

There are two different multiplicative analogues of Mackey functors, one richer
than the other. First, recall the notion of a Green functor.

Definition 4.1. A Green functor is a commutative monoid in the category of
Mackey functors with the Day convolution product. That is, it is a Mackey functor
R such that

i) R(G/H) is a ring
ii) The restriction maps are all ring homomorphisms
iii) The transfer map R(G/K) → R(G/H) is a homomorphism of R(G/H)-

modules.

The last condition implies the push-pull relation, of which Theorem 3.2 is one
form.

Green functors are all well and good, but this is really the minimal amount
of structure we could expect for an equivariant ring. On the other end of this
are Tambara functors, which have multiplicative transfers, or “norms”, as well as
additive transfers.

Definition 4.2. Let C be a locally Cartesian-closed category. The category of
bispans of C is the (weak) (2, 1)-category Bispan(C ) in which

i) The objects are the objects of C

ii) A morphism from X to Y is a “bispan” X ← S → T → Y
iii) A 2-morphism between two bispans is an isomorphism of diagrams which

is the identity on X and Y .
Composition of bispans is given by taking pullbacks followed by so-called “expo-

nential diagrams”.
We write B̃ispan(C ) for the category obtained from Bispan(C ) by group-completing

the hom-categories with respect to the coproduct.

Definition 4.3. A G-Tambara functor is an additive functor B̃ispan(OG)→ Ab.

These are like Mackey functors, but they have an extra transfer map encoded by
the extra map in a bispan. (A more detailed overview can be found in [8].) Recall,
though, that we don’t have every possible transfer; if we’re dealing with N∞-rings,
we’ll only have transfers associated to admissible H-sets. This leads to the notion
of an “incomplete” Tambara functor.

Definition 4.4. Let D be a wide, pullback-stable, coproduct-complete subcategory
of GSet; we say that D is an indexing category ([2]). Then we write PG

D
for the



REFERENCES 7

subcategory4 of B̃ispan(GSet) of bispans in which the middle morphism in in D .
We call an additive functor PG

D
→ Ab a D-Tambara functor ([3]).

Remark 4.5. There is a natural order-preserving map from the poset of indexing
categories to the poset of indexing systems, given by sending D to the system ID

which sends G/H to D/(G/H). It is not too difficult to show ([3]) that this is an
isomorphism.

The results of the previous sections on π0 can be summed up as follows.

Theorem 4.6. Let O be an N∞-operad, and write D for the indexing category
corresponding to the associated indexing system. Then for any O-algebra X in
SpG, π0(X) is naturally a D-Tambara functor. If O is a complete N∞-operad,
π0(X) is a Tambara functor.
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